



#### WORKSHOP

# Oxygen Imaging in Tissue and Blood Circulation with Two-Photon Phosphorescence Lifetime Microscopy

25 December 2017, Kharazmi University





#### Presenter:

Mohammad Moeini

Institute of Biomedical Engineering, Polytechnique Montreal Montreal Montreal Heart Institute, University of Montreal

### Schedule

- 3 hours
- 4 lectures:

Lecture 1 (Oxygen imaging)
Lecture 2 (Two-photon microscopy)
Lecture 3 (Phosphorescent O<sub>2</sub> nano-probes)
Lecture 4 (*In vivo* implementation)

# Lecture 1

# **Oxygen Imaging**



### Outline

- Why oxygen imaging?
- Available methods for oxygen imaging
- Advantages and disadvantages of each method
- Oxygen sensing with phosphorescent lifetime microscopy

# Why oxygen imaging?

- $O_2$  is essential for energy metabolism in every cell in the body.
  - No food: up to 1 month, no water: up to 2 weeks, no oxygen: up to 10 min
- More critical for the brain
  - High rate of oxygen consumption
  - No reserved oxygen in brain
  - Limited neuroregeneration
  - Glucose in the brain enough for several minutes,  $O_2$  enough for just 1 second
- Compromised oxygen delivery to the brain in healthy aging and/or diseases and possible role in neuronal death and neurodegenerative diseases.
  - Dementia
  - Alzheimer's Disease
  - Parkinson's Disease
- Cancer therapy
  - Hypoxic tumors
  - More resistant to treatments
  - Diagnosis and optimization of treatment protocols

### Available methods for oxygen imaging

- Optical imaging of intrinsic signals
- Photo-acoustic tomography
- Blood-oxygen-level dependent (BOLD) fMRI
- Positron emission tomography (PET)
- Electron paramagnetic resonance (EPR) oximetry
- Polarographic O2 sensors
- Immunochemical methods
- Methods based on oxygen dependent quenching of phosphorescence

# **Optical imaging of intrinsic signals**

- Based on differential absorption spectra of oxy- and deoxyhemoglobin
- Beer–Lambert law
- Cannot measure absolute values of Hb or OHb concentrations
- Oxygen saturation (SO<sub>2</sub>) = the ratio of oxygenated hemoglobin concentration to total hemoglobin concentration
- Non-invasive
- No need for loading of extrinsic O2-sensitive probes
- Excellent temporal resolution (real-time measurements)
- Low cost
- Long penetration depth
- Measurement of oxygen saturation of blood rather than actual oxygen content
- Unable to measure tissue pO<sub>2</sub>



# **Photo-acoustic microscopy**

- Similar to optical imaging of intrinsic signals
- Photoacoustic effect: formation of sound waves following light absorption
- Modulated light or pulsed light
- Pulsed laser → absorption → thermal expansion → acoustic waves → ultrasound detection
- Based on differential absorption spectra of oxy- and deoxy-hemoglobin
- Non-invasive
- No need for loading of extrinsic O<sub>2</sub>-sensitive probes
- Excellent temporal resolution (real-time measurements)
- Long penetration depth
- Measurement of oxygen saturation of blood rather than actual oxygen content
- Unable to measure tissue pO<sub>2</sub>





### Blood-oxygen-level dependent (BOLD) fMRI

- Based on differential magnetic properties of oxy- and deoxy-hemoglobin
- The oxygenation dependence of the transverse relaxation time of water protons
- Changes in the local magnetic field around the blood vessels
- Non-invasive
- No need for loading of extrinsic O<sub>2</sub>-sensitive probes
- Good temporal resolution
- Can only measure <u>changes</u> in blood oxygenation
- Low spatial resolution (in the order of 1 mm)
- Unable to measure tissue pO<sub>2</sub>





#### <sup>19</sup>F MRI

- <sup>19</sup>F nuclear magnetic resonance (NMR) relaxation rate of perfluorocarbon (PFC) probes varies linearly with oxygen concentration.
- Unlike conventional MRI (proton imaging), a probe based on PFCs is used
- Absolute values of oxygen concentration
- Requirement of an exogenous probe
- Low spatial resolution (in the order of 1 mm)

### Electron paramagnetic resonance (EPR) oximetry

- A Magnetic resonance method
- Similar to MRI, but transition of electrons (instead of protons) between two energy levels is observed.
- Spin probes: broadening of EPR spectrum with O<sub>2</sub> concentration
- Absolute values of O<sub>2</sub> concentration
- Minimally invasive
- Requirement of an exogenous probe
- Low spatial resolution (in the order of 1 mm)
- Poor SNR
- Long acquisition times (Low temporal resolution)

Ahmad and Kuppusamy (2010) Chem. Rev., 110, 3212.





in the absence of  $B_0 \mu$ 's are oriented arbitrarily

in the absence of  $B_0\ \mu$ 's are oriented arbitrarily



### **Immunochemical methods**

- Hypoxia markers such as 2-nitroimidazoles
- Maximum binding to severely hypoxic cells, increased inhibition with increasing oxygenation
- Allowing tissue pO<sub>2</sub> imaging
- Cannot measure real-time tissue pO<sub>2</sub>
- Dependence of binding on factors other than pO<sub>2</sub> (level of tissue perfusion, the amount of reductases in the tissue) → Difficulty in quantification of the results
- Nonoxygen-dependent metabolism

# **Positron emission tomography (PET)**

- A nuclear medicine functional imaging technique
- Short-lived radiotracers (Fluorine-18, half-time~110 min)
- Injection of the radiotracer
- Perfusion in tissue
- Imaging
- Positron emission decay of the radiotracer
- Travel of emitted positron in tissue for a short distance (typically <1 mm)
- Kinetic energy loss
- Interaction of decelerated positron with an electron (annihilation)
- Production of a pair of gamma photons moving in opposite directions
- Coincident detection of the pair of photons with a scintillator





# **Positron emission tomography (PET)**

- Fludeoxyglucose (FDG), an analogue of glucose: tissue metabolic activity
- Hypoxia imaging: Similar to immunochemical methods
   2-nitroimidazole compounds (18F-FMISO, 18F-FAZA)
- Accumulation of the tracer in cells is influenced by the O<sub>2</sub> level
- Tissue pO<sub>2</sub>
- 3D
- Minimally invasive
- Difficulty in quantification of the results
- Low spatial resolution (in the order of 5 mm)
- Limited by the availability and cost of cyclotrons to produce short-lived radionuclides

# **Polarographic O<sub>2</sub> sensors**

- Clark electrodes: "gold standard" for measuring tissue oxygenation
- Based on electrochemical reduction of oxygen at the cathode:

 $\mathrm{O_2} + 4~\mathrm{e^-} + 4~\mathrm{H^+} \rightarrow 2~\mathrm{H_2O}$ 

- Maximum current depends on the oxygen concentration
- Absolute O<sub>2</sub> concentration
- Allowing tissue pO<sub>2</sub> imaging
- Good temporal resolution
- Invasive
- Low spatial resolution
- $O_2$  consumption
- Poor SNR at low oxygen concentrations
- Need for repeated calibrations



#### **Oxygen dependent quenching of phosphorescence**

• Phosphorescence process:



• Phosphorescence lifetime rather than intensity

Gated excitation rather than continuous excitation



#### **Oxygen dependent quenching of phosphorescence**

- Collision of oxygen molecules with phosphorescence molecule in the excited triplet state quenches the emitted phosphorescence (energy transfer to O<sub>2</sub>)
- Higher oxygen concentration → Higher decay rate of phosphorescence (shorter lifetime)



- Absolute measurement of  $pO_2$  in blood and tissue
- Independent of probe concentration
- Real-time measurements
- Minimally invasive
- High spatial resolution



### Phosphorescence lifetime two-photon microscopy

Recent progress: development of <u>new FRET-based phosphorescent probes</u> that can be combined with two-photon microscopy:<sup>1,2</sup>

#### **Phosphorescence lifetime imaging**

Based on oxygen-dependent quenching of phosphorescence



+

#### **Two-photon microscopy**

Single-photon excitation

Two-photon excitation





3D measurements Higher spatial resolution Deeper measurements Reduced risk of photodamage

<sup>1</sup> Finikova et al. (2008). Chem Phys Chem 9: 1673.