Lecture 3

Phosphorescent O₂ nano-probes

Outline

- The history and development of phosphorescent O2 probes
- Structure and sensing mechanism
- Synthetic approach (design, synthesis, purification, characterization)

A brief history Early works

- 1990s decade
- Porphyrin complexes of Pd²⁺ and Pt²⁺

- Interactions with other biomolecules in blood
- Bound to serum albumin

A brief history **Providing biological compatibility**

1999-2011

Vinogradov et al. (1999) Chem. Eur. J. 5, 1338. Rietveld et al. (2003) Tetrahedron, 59, 3821. Esipova et al. (2011) Anal. Chem. 83, 8756.

- Dendritic protection (encapsulation) ٠
 - Low toxicity
 - Low immunoreactivity
 - Neutrality (no sensitivity to pH, other molecules, etc)
 - Water solubility
 - Controlled size and molecular weight distribution
 - Fine-tuning of oxygen diffusion and quenching properties of the molecule sensitivity and dynamic range

A brief history Providing biological compatibility

- Choice of dendrimer:
 - Stable (not degraded by enzymes, not targeted by the immune system)
 - In the case of partial decomposition, shows no toxicity
 - Possibility of functionalization of the outer layer (for fine-tune of the environment of the porphyrin)
 - Highly soluble in water
 - 3D conformation (determines the O2 diffusion and quenching properties)
 - Lack of aggregation in aqueous solutions
 - Ease of reactions with good yields

A brief history

Combination with two-photon microscopy

• 2005

Brinas et al (2005) J. Am. Chem. Soc. 127, 11851.

- Extremely low 2Ph absorption of Pt and Pd porphyrin-based dyes
- Amplification of 2PA induced phosphorescence: 2P absorbing antenna and intramolecular energy transfer (ET)

A brief history

Combination with two-photon microscopy

- 2Ph antenna maximal absorption in near infrared window (700-900 nm)
- Overlap between the fluorescence of antenna and absorption of porphyrin core
- Large amplification of the phosphorescent signal upon 2P excitation
- Acceptable phosphorescence quantum yield: Adjustment of 3D conformation, number of antenna chromophores , their separation, and their distance to core

A brief history PtP-C343 dye

• 2008

Lebedev et al. (2008) *J. Porphyrins Phthalocyanines*, 12, 1261. Finikova et al. (2008) ChemPhysChem, 9, 1673.

- The first practical 2P phosphorescent nanoprobe for in vivo oxygen imaging
- Tuning the distances between the antenna and the core
- Adjusting their redox potentials
- Prevention of unwanted electron transfer (intramolecular quenching of phosphorescence)

A brief history PtP-C343 dye

• Core: Pt-porphyrin

O2-sensitive

• Dendrimer:

Distance adjustment Limiting the O2 diffusion

- 2Ph antennas: Coumarin 343 Enhanced 2Ph absorption
- PEG units (750-2000 Da) Aqueous solubility Nautrality
- $\tau_0 \sim 60 \ \mu s$
- λ_{ex} (2Ph)=840 nm, λ_{em} =670 nm
- MW: 62,800, Size: ~ 5 nm
- Quantum yield: 10%

A brief history PtP-C343 dye

- No effect on cell viability
- No interaction with other biomolecules
- Not sensitive to pH

A brief history

Enhanced phosphorescence quantum yield

• 2014

Roussakis et al. (2014) Anal. Chem. 86, 5937.

PtTCHP-C307 dye

Modified porphyrin core and antenna

Reduction of emissivity loss by further limitation of unwanted electron transfers

Significant increase in the phosphorescence quantum yield

Up to 6-fold higher signal output.

A brief history Two-photon probes with no antenna

• 2014

Esipova et al (2014) J. Org. Chem. 79, 8812.

Asymmetrically π -extended Pt and Pd porphyrins

More difficult to synthetize

Enhanced 2PA brightness and phosphorescence quantum yield

Synthetic approach Design

- Ease of reactions and purifications
- Good yield
- Stability of the dye and the intermediate compounds
- No toxicity, Solubility in water, No aggregation in aqueous solutions
 - Dendritic structure (structure, generation)
 - Encapsulation (number of PEG units, MW, functionalization)
- Appropriate photophysical and quenching properties
 - Dendritic structure (diffusion barrier, electron transfer)
 - 2Ph antenna porphyrin core pairs (absorption and emission bands, redox potentials)
 - Control over the number of 2Ph antennas and their location
 - 3D conformation (antenna-antenna and antenna-porphyrin distances)

Synthetic approach Design

• Divergent synthesis

• Convergent synthesis

• Combined divergent/convergent approach

Synthetic approach PtP-C343

Pt-Porphyrin Core

Generation 3 Arylglycine (AG) Dendrons

PtP-C343

Synthetic approach Purification

- Washing and extraction
- Filtration
- Precipitation and crystallization
- Chromatography
- Centrifugation

Purification Washing and extraction

- Selective removal of one compound from a mixture using a solvent
- Washing: solid-liquid
- Extraction: liquid-liquid
- Solvent and mixture must be immiscible
- The compound must be more soluble in the solvent than in the mixture

Separatory funnel

Purification Filtration

- Solid-liquid systems
- Size exclusion
- Vacuum
- Filter papers

Purification Precipitation and crystallization

- Creation of a solid from a solution
- Precipitation: rapid formation of solid
- Crystallization: slow formation of a crystal network
- Solubility change
 - Cooling
 - Addition of another solvent
 - Acidification

Purification Centrifugation

- To accelerate the precipitation process
- Suspensions; emulsions
- Centrifuge tubes
- 3000 10000 rpm

Purification Chromatography

- Column chromatography
 - Mobile phase
 - Stationary phase
- The various compounds travel at different speeds, causing them to separate.

- Flash chromatography
- Size-exclusion chromatography

Purification Chromatography

- Flash chromatography
- Polar stationary phase (silica gel (SiO₂); alumina (Al₂O₃))
- Non-polar or weakly polar mobile phase
- Separation based on component polarity
- More polar compound \rightarrow stronger interaction \rightarrow slower movement
- Mobile phase may be a mixture, allowing fine-tuning the component separation
- Positive pressure (N₂)

Purification Chromatography

- Size-exclusion chromatography (gel permeation chromatography, GPC)
- Stationary phase with fine porous structure (cross-linked dextran gel)
- Based on component size

Synthetic approach Characterization

- Thin layer chromatography (TLC)
- Nuclear magnetic resonance (NMR) spectroscopy
- Mass spectroscopy (MS)
- UV-Vis spectroscopy
- Gel permeation chromatography (GPC)
- Fourier-transform infrared spectroscopy (FTIR)

Characterization TLC

- Similar to column chromatography
- A sheet of glass, plastic, or aluminum foil, coated with a thin layer of adsorbent material (silica gel or alumina)
- Capillary action
- Visualization of spots, usually by projecting ultraviolet light
- Ideal for monitoring the reaction completion

Characterization NMR

- Nuclear magnetic resonance (NMR): absorption and re-emission of electromagnetic radiation by NMR active nuclei (such as ¹H or ¹³C) in a magnetic field
- At a specific resonance frequency (chemical shift) which depends on the magnetic properties of the atoms
- Diagnostic of the structure of the molecule
- Different functional groups
- Identical functional groups with differing neighboring substituents

Characterization NMR

PtP-(AG³OBu)₄

PtP-(AG³OH)₄

Characterization Mass spectroscopy

Ionization

Acceleration, subject to an electric and/or magnetic field

The speed and direction of charged particles movement depends on their mass-tocharge ratio

Ion detection (electron multiplier)

Characterization Mass spectroscopy

Sample

here

enters Heater vaporizes

sample

Electron beam source

Electrospray ionization (ESI)

Ion production using an electrospray

Matrix-assisted laser desorption/ionization (MALDI)

Ion creation using a laser energy absorbing matrix

Mixing the sample with a suitable matrix material

Pulsed laser irradiation

lons accelerated

Magnet

Magnetic field deflects lightest ions most

Detector

Characterization Mass spectroscopy

Calculated MW: 1023.1

Characterization UV-Vis spectroscopy

• Absorption spectroscopy in the ultraviolet-visible spectral region

Characterization UV-Vis spectroscopy

Calculated dye/dendrimer molar ratio: ~ 5 Expected ratio: 4-5

Characterization GPC

GPC Results

	Dist Name	Mn	Mw	Μv	MP	Mz	Mz+1	Polydispersity	κ	alpha
1		9329	12021		12452	14171	16170	1,288644		

Characterization FTIR

- Infrared absorption spectrum
- Solid state

Characterization FTIR

Forster-type resonance energy transfer (FRET)

- Energy transfer between two light-sensitive molecules (chromophores) through nonradiative dipole-dipole coupling
- Over distances between 10 and 100 Angstrom
- Extremely sensitive to small changes in distance (inversely proportional to the sixth power of the distance between donor and acceptor)