

Cellular Entry of Gold Nanoparticles

Ahmad Sohrabi Kashani

Research Assistant at Bio-Optical Microsystem Lab. Mechanical, Industrial and Aerospace Engineering Department

December 2017

Outline

□ Introduction

- Nanoparticles applications
- **Gold Nanoparticles**
- Surface Plasmon Resonance
- Nanoparticle-based drug delivery system
- Cellular entry of nanoparticles

□ Comparative study on cellular entry of two different types of gold

nanoparticles

- Preparation of nanoparticles
- Imaging techniques
- Results

D Possible effects of nanoparticle absorbance on biophysical properties

- Importance of biophysical properties Various methods for biophysical characterization Classical methods, MEMS-based methods, Microfluidic Methods Suspended- microfluidic for biophysical characterization
- □ Summary

http://bgr.com/2014/05/05/ nanogold-paint-smartphones-biotech/

1- Cellular Entry of Nanoparticles

Behzadi et al, Chem Sco Rev, 2017

Nanoparticles types/applications

http://nanogloss.com/nanoparticles

4 Concordia

Engineering

Nanoparticles

- Nanoparticles are small pieces of substances between 1 to 100 nanometers having various applications
- Nanoparticles are classified based on their properties

5

Size

Optical Properties

Morphology

How can you see Nanoparticles?

- We cannot see nanoparticles with regular microscopes
- □ Scanning Electron Microscopy (SEM)
- □ Atomic Force Microscopy (AFM)
- □ Transmission Electron Microscopy (TEM)

silver nanoparticles http://www.nanoscop y.net/

Gold nanoparticles Imperial college London

Nanogold particles

Gold Particles (AuNPs) have great potentials for biomedical applications

• AuNPs are tunable in term of :

Gold Nanoparticles Properties: Surface Plasmon Resonance

- Optical Properties of metallic nanoparticles: Gold and Silver
- (The wavelength of the light are larger than the size of particles) $R < \lambda$
- LSPR: Localized Surface Plasmon Resonance

Gold Nanoparticles Properties

Colloidal Gold (Suspension of submicron particles of golds in fluid)

Influence of gold nanoparticles properties on LSPR

Size Sharper to broader

http://www.cytodiagnostics.com

Shape

(a)

Senyuk et al, Nano Letter, (2012)

Influence of gold nanoparticles properties on LSPR

Aggregation

Kumar et al, Pharmacy and Pharmaceutical Science, 2014

Nanoparticles for drug-delivery

Nanoparticles can be absorbed, convolutely attached, or encapsulated into particles

Limitation of conventional methods

- Lack of selectivity toward cancerous cells
- Systemic toxicity
- Low therapeutic index
- Low circulation half-life
- Tendency to aggregate

https://www.cancer.gov/sites/ocnr/cancer-nanotechnology/treatment

Advantages of NPs for drug delivery

13

Targeting Approaches

1- Active Targeting (Pre conjugated with antibodies, small molecules and peptides)

2- Passive Targeting (EPR)

Ajnai et al, Journal of Experimental and Clinical Medicine (2014)

Limitation of nanoparticle drug delivery system

Two determining factors should be taken into account before using nanoparticles as Drug Delivery system

- 1- Biocompatibility
 - Not toxic (Exposure time, dose) Methods: viability of cell Function changes
 - Accepted by body without rejection
 - Inert or stable
- 2- Internalization ability (subcellular location)

2- Comparative Study on cellular entry of Synthesized and Ayuverdic gold particles

- Scientific Report, Nature (2017)
- Plasmonic, Springer (2017)
- Nanoscience and Nanotechnology, ASP, (2017)

Synthesized gold nanoparticles and Ayuverdic particles

Characterization of particles

Scanning Electron Microscopy (SEM)

IAuPs

Average Size: 4500 nm (Dynamic Light Scattering) Crystal size: 60 nm Non-uniform

Average Size: 32 nm uniform

19

Elemental composition of AuNPs and IAuPs

EDS-SEM for IAuPS

	AuNPs	IAuPs
Au	56.88 %	89.6 ppm
Mg	1.8 %	0.273 ppm
Na	-	20.9 ppm

EDS-SEM for IAuPS

Optical-Bio Microsystems Laboratory

Characterization of gold nanoparticles to cells

To test the toxicity and subcellular location

Two experiment test were performed 1- under different exposure time 2- under different doses

Two types of cell lines were chosen 1- HeLa (Cancerous cells) 2- HFF1- (Healthy cells)

Test: Localization, entry and impacts on human cells

http://smashinglife.co.uk/cancer-cells-look/

Nanoparticles

Imaging Techniques: Light Microscopy SEM Hyperspectral Imaging

21

Nanoparticle in cells (Light Microscopy)

HFF-1 Cells

HeLa Cells

Leica DMI 6000 B inverted epifluorescence microscope

Concentration and incubation time effects

Optical-Bio Microsystems Laboratory

Concordia

AuNPs and IAuPs in Cells (SEM)

Low con. AuNPs in Hela

Optical-Bio Microsystems Laboratory

High con. AuNPs in HeLa

Control w/o AuNPs

Nanoparticle in cells (Live Imaging)

Hyperspectral Microscopy CytoViva

Technology for characterization of nanomaterial in cells

Combination of:

- Hyperspectral imaging system
- Optical Microscope

Optical-Bio Microsystems Laboratory

Using Hyperspectral Microscopy for AuNPs in cells

- Presence of AuNPs
- Location of AuNPs

- E S

Enhanced dark field imaging

Hyperspectral imaging of AuNPs and IAuPs in cells

Intracellular Localized Surface Plasmonic Sensing for Subcellular Diagnosis

Breaking IAuPs to smaller particles

Concordia

Broken and unbroken particles in cells

Concordia

Hyperspectral imaging of broken and unbroken IAuPs in cells

A)Unbroken IAuPs

B)Broken IAuPs

33

Entry mechanism of IAuPs

Mechanicsms	Before blocking	After blocking (changes)
Macropinocytosis	9.2 %	4.7%(- 4.5%)
Clarotin-mediated	11.1 %	4.9% (- 5.2%)
Both Macropincocytosis and Clarotin- mediated	9.2 %	4% (-5.2 %)
Calveolin-mediated	~12 %	~ 12%

34

Nanoparticles in Nucleus

Interphase

Anaphase/ Early Telophase Late Telophase

Daughter Cells

Nuclear Envelope Breakdown Nuclear Envelope Reassembly

3- Impacts of nanoparticles

Robyn et al, (2014)

Optical-Bio Microsystems Laboratory

36

Biophysical properties of cells

Biophysical properties of cells? BIOMECHANICAL, bioelectrical, biochemical

□ Important biophysical biomechanical properties

Size, Viscoelastic properties

Mass

Friction

Density

Mechanics

Components and Mechanics of Cells (Eukaryotic cell)

Why studying Bio-Mechanical Properties of cells is important?

Bio-mechanical properties of cells during disease undergo changes

Optical-Bio Microsystems Laboratory

Different Methods for Deformability Characterization of Single Cells

(a)

Methods:

- Classical Methods.
- MEMS-based methods,
- Microfluidic-based methods

Lengthscale (m)

Classical methods:

Deformability characterization: MEMS-based systems

Limitations:

Expensive External devices Non-Transparent

Microfluidic-based systems

- A) Constriction-induced deformation
- B) Multiple Constriction channel
- C) Micro- aspiration
- D) Hydrodynamic-induced deformation

□ Advantages

High-throughput Easy fabrication

Limitation

Low precision

Concordia

Nanoparticle uptake effects on biomechanical of cells

- NPs can provide desirable effects on cells
- But! The intercellular effects of NPs in cells is unknown.

cell	Particles	Effects on stiffness
mesenchymal stem cells	Silica	Increased
Escherichia coli	Hematite NPs	Increased
iron oxide NPs	endothelial	Increased
Selenium NPs	MCF-7	Decreased

Summary

- □ Advantages of nanoparticles have made them a good candidate for medical application
- Gold nanoparticles can be used for cancer diagnosis as well as cancer therapy
- Nanoparticle-based drug delivery system can provide advantages comparing to conventional methods
- Cellular entry and toxicity are two determining factors in choosing particles for drugdelivery systems
- □ Nanoparticles can enter cells through different mechanisms
- □ Nanoparticles absorption can alter biophysical properties of cells
- Resolution and throughput are two important factor for bio-mechanical characterization of cells

