Faculty of Physics- General News
IOMP Webinar: Radiopharmaceutical Therapy (RPT)

Restore images and colors  | Post date: 2023/10/14 | 

IOMP Webinar: Radiopharmaceutical Therapy (RPT)

Tuesday, 25th October 2023 at 12 pm GMT; Duration 1 hour

Register here

To check the corresponding time in your country please check this link:
https://greenwichmeantime.com/time-gadgets/time-zone-converter/

Organizer: M Mahesh
Moderator: M Mahesh
Speakers: George Sgouros and Ana Kiess


Topic 1: Imaging and Dosimetry in Radiopharmaceutical therapy

George Sgouros, PhD


Dr. Sgouros is Professor and Director of the Radiological Physics Division in the Department of Radiology at Johns Hopkins University, School of Medicine. He received his PhD from Cornell University, Biophysics Dept, completed his post-doc at Memorial Hospital Medical Physics Dept. He is author on more than 200 peer-reviewed articles, several book chapters and review articles. He is recipient of the SNMMI Saul Hertz Award for outstanding achievements and contributions in radionuclide therapy and a fellow of the American Association of Physicists in Medicine (AAPM). He is a member of the Medical Internal Radionuclide Dose (MIRD) Committee of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), which he chaired 2008-2019.  He has chaired a Dosimetry & Radiobiology Panel at a DOE alpha-emitters workshop and also an ICRU report committee for ICRU guidance document No. 96. Dr. Sgouros is a former chair (2015-2017) of the NIH study section on Radiation Therapeutics and Biology (RTB). Dr. Sgouros is also founder and principal of Rapid, a dosimetry and imaging services and software products start-up in support of radiopharmaceutical therapy.

Abstract

Even after they have made it to Phase I clinical trial investigation, 97% of new cancer drugs fail. The majority of these drugs are chosen based on their ability to inhibit cell signaling pathways responsible for maintaining a cancer phenotype. Although this approach has led to dramatic improvements in treatment efficacy for certain cancers, this approach to cancer therapy is more complex than initially appreciated. Radiopharmaceutical therapy (RPT) involves the targeted delivery of radiation to tumor cells or to the tumor microenvironment. Since the radionuclides used in RPT also emit photons, nuclear medicine imaging may be used to measure the pharmacokinetics of the therapeutic agent and estimate tumor and normal organ absorbed doses in individual patients to implement an individualized (precision medicine) treatment planning approach to RPT delivery. This unique feature of RPT, along with its ability to delivery highly potent alpha-particle radiation to targeted cells, is at the heart of what distinguishes RPT compared to other cancer treatments for widespread metastases.

 Learning Objectives:

  1. Understand the mechanism of Radiopharmaceutical therapy. 
  2. Compare and contrast RPT with other cancer therapy modalities. 
  3. Understand the distinction between RPT and Theranostics.

 


Topic 2: Clinical Radiopharmaceutical Therapy, Dose-Response and Future Directions

Ana Kiess, MD, PhD

Dr. Ana Kiess’s clinical focus is on the treatment of prostate cancer and head and neck cancers with radiopharmaceutical therapies and external beam radiotherapy. Her research concentrates on the integration of dosimetry, dose-response analyses, and new radiopharmaceutical therapies into the clinic.

Education:

MD; Duke University School of Medicine (2008)
PhD; Biomedical Engineering; Duke University (2008)

Residency:

Radiation Oncology; Memorial Sloan-Kettering Cancer Center (2013)

Recent Publications:

  1. Wang J, Kiess AP.  PSMA-targeted therapy for non-prostate cancers. Front Oncol. 2023 Aug. 13:1220586. doi: 10.3389/fonc.2023.1220586.
  2. Kiess AP, Hobbs RF, Bednarz B, Knox SJ, Meredith R, Escorcia FE.  ASTRO’s framework for radiopharmaceutical therapy curriculum development for trainees.  Int J Radiat Oncol Biol Phys. 2022; 113(4):719-726.
  3. Jia AY, Kashani R, Zaorsky NG, Baumann BC, Michalski J, Zoberi JE, Kiess AP, Spratt DE. Lutetium-177 Prostate-Specific Membrane Antigen Therapy: A Practical Review. Pract Radiat Oncol.  2022; 12(4): 294-299.
  4. Jia AY, Kiess AP, Li Q, Antonarakis ES.  Radiotheranostics in advanced prostate cancer: Current and future directions.  Prostate Cancer and Prostatic Diseases. 2023, April: 1-11.

Abstract

Radiopharmaceuticals are rapidly expanding in clinical use and development for prostate cancer and many other tumor types.  As in other radiation therapies, there is a dose-response relationship for both tumor and normal tissues, with increasing responses or toxicities at higher absorbed doses.  In this webinar, we will discuss these concepts in relation to currently approved radiopharmaceutical therapies (RPTs) and future directions of RPTs.  We will also review clinical indications and practical use of currently approved RPTs including [177Lu] Lu-PSMA-617, [177Lu] Lu-DOTATATE, and [223Ra] RaCl2.

Learning Objectives:

  1. Understand clinical indications and practical use of currently approved radiopharmaceutical therapies
  2. Discuss concepts of radiation dose and response of tumors and normal organ toxicities
  3. Explore future directions of clinical radiopharmaceutical therapies.

 
Topic URL in Faculty of Physics website:
http://khu.ac.ir/find-90.28446.69957.en.html
Back to content primary page